A scoping review of spatial cluster analysis techniques for point-event data

Submitted: 15 December 2014
Accepted: 15 December 2014
Published: 1 May 2013
Abstract Views: 5207
PDF: 3115
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


Spatial cluster analysis is a uniquely interdisciplinary endeavour, and so it is important to communicate and disseminate ideas, innovations, best practices and challenges across practitioners, applied epidemiology researchers and spatial statisticians. In this research we conducted a scoping review to systematically search peer-reviewed journal databases for research that has employed spatial cluster analysis methods on individual-level, address location, or x and y coordinate derived data. To illustrate the thematic issues raised by our results, methods were tested using a dataset where known clusters existed. Point pattern methods, spatial clustering and cluster detection tests, and a locally weighted spatial regression model were most commonly used for individual-level, address location data (n = 29). The spatial scan statistic was the most popular method for address location data (n = 19). Six themes were identified relating to the application of spatial cluster analysis methods and subsequent analyses, which we recommend researchers to consider; exploratory analysis, visualization, spatial resolution, aetiology, scale and spatial weights. It is our intention that researchers seeking direction for using spatial cluster analysis methods, consider the caveats and strengths of each approach, but also explore the numerous other methods available for this type of analysis. Applied spatial epidemiology researchers and practitioners should give special consideration to applying multiple tests to a dataset. Future research should focus on developing frameworks for selecting appropriate methods and the corresponding spatial weighting schemes.



PlumX Metrics


Download data is not yet available.


How to Cite

Fritz, C. E., Schuurman, N., Robertson, C., & Lear, S. (2013). A scoping review of spatial cluster analysis techniques for point-event data. Geospatial Health, 7(2), 183–198. https://doi.org/10.4081/gh.2013.79

List of Cited By :

Crossref logo

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.