Skip to main content Skip to main navigation menu Skip to site footer
Geospatial Health

eISSN 1970-7096 - pISSN 1827-1987

  • About the Journal
  • Publication Ethics
  • Editorial Board
  • Current Issue
  • Archives
  • Special on COVID-19
  • Special Issues
    • Overview
  • Register
  • Login
  • Search
  • Contacts
  • News

Editor-in-Chief: Robert Bergquist

1.0
Impact Factor 2023
2.4
CiteScore 2023
Submit
an article
  1. Home /
  2. Search

Search

Advanced filters
Published After
Published Before

Search Results

##search.searchResults.foundPlural##
  • Impact of climate variability on the occurrence of cutaneous leishmaniasis in Khuzestan Province, southwestern Iran

    Farideh Azimi, Sadegh Shirian, Saranaz Jangjoo, Arman Ai, Tahereh Abbasi
    08-05-2017
    https://doi.org/10.4081/gh.2017.478
    2605
    PDF: 1193
    HTML: 1037
  • Spatial analysis of cutaneous leishmaniasis in an endemic area of Iran based on environmental factors

    Roghieh Ramezankhani, Nooshin Sajjadi, Roya Nezakati Esmaeilzadeh, Seyed Ali Jozi, Mohammad Reza Shirzadi
    08-11-2017
    https://doi.org/10.4081/gh.2017.578
    2436
    PDF: 867
    HTML: 914
  • Ecological characterization of a cutaneous leishmaniasis outbreak through remotely sensed land cover changes

    Verónica Andreo, Juan Rosa, Karina Ramos, O. Daniel Salomón
    06-05-2022
    https://doi.org/10.4081/gh.2022.1033
    1468
    PDF: 670
    Appendix: 94
    HTML: 30
  • Epidemiological aspects and spatial distribution of human and canine visceral leishmaniasis in an endemic area in northeastern Brazil

    Roseane Campos, Márcio Santos, Gabriel Tunon, Luana Cunha, Lucas Magalhães, Juliana Moraes, Danielle Ramalho, Sanmy Lima, José Antônio Pacheco, Michael Lipscomb, Amélia Ribeiro de Jesus, Roque Pacheco de Almeida
    11-05-2017
    https://doi.org/10.4081/gh.2017.503
    4834
    PDF: 1856
    HTML: 1137
  • Application of decision tree for prediction of cutaneous leishmaniasis incidence based on environmental and topographic factors in Isfahan Province, Iran

    Roghieh Ramezankhani, Nooshin Sajjadi, Roya Nezakati Esmaeilzadeh, Seyed Ali Jozi, Mohammad Reza Shirzadi
    08-05-2018
    https://doi.org/10.4081/gh.2018.664
    1599
    PDF: 753
    HTML: 157
  • American cutaneous leishmaniasis cases in the metropolitan region of Manaus, Brazil: association with climate variables over time

    Rodrigo Augusto Ferreira de Souza, Rita Valéria Andreoli, Mary Toshie Kayano, Afrânio Lima Carvalho
    18-05-2015
    https://doi.org/10.4081/gh.2015.314
    2712
    PDF: 1319
    HTML: 810
  • Spatial and spatiotemporal dynamics of visceral leishmaniasis in an endemic North-eastern region of Brazil

    Ândria Silveira Almeida, Caíque Jordan Nunes Ribeiro, Camila Caroline Carlini, Rogério Silva Santos, Allan Dantas dos Santos, Débora Santos Tavares, Karina Conceição Gomes Machado de Araújo, Tatiana Rodrigues de Moura, Priscila Lima dos Santos
    11-01-2021
    https://doi.org/10.4081/gh.2020.885
    1623
    PDF: 748
    HTML: 34
  • Use of soil moisture active passive satellite data and WorldClim 2.0 data to predict the potential distribution of visceral leishmaniasis and its vector Lutzomyia longipalpis in Sao Paulo and Bahia states, Brazil

    Moara de Santana Martins Rodgers, Elivelton Fonseca, Prixia del Mar Nieto, John B. Malone, Jeffery C. Luvall, Jennifer C. McCarroll, Ryan Harry Avery, Maria Emilia Bavia, Raul Guimaraes, Xue Wen, Marta Mariana Nascimento Silva, Deborah D.M.T. Carneiro, Luciana Lobato Cardim
    08-06-2022
    https://doi.org/10.4081/gh.2022.1095
    1322
    PDF: 734
    HTML: 43
  • Ecological niche model of Phlebotomus perniciosus, the main vector of canine leishmaniasis in north-eastern Italy

    Manuela Signorini, Rudi Cassini, Michele Drigo, Antonio Frangipane di Regalbono, Mario Pietrobelli, Fabrizio Montarsi, Anna-Sofie Stensgaard
    193-201
    01-11-2014
    https://doi.org/10.4081/gh.2014.16
    3374
    PDF: 1406
  • Hyperendemicity, heterogeneity and spatial overlap of leprosy and cutaneous leishmaniasis in the southern Amazon region of Brazil

    Amanda Gabriela de Carvalho, João Gabriel Guimarães Luz, João Victor Leite Dias, Anuj Tiwari, Peter Steinmann, Eliane Ignotti
    29-12-2020
    https://doi.org/10.4081/gh.2020.892
    1785
    PDF: 805
    HTML: 30
  • Environmental modelling of visceral leishmaniasis by susceptibility-mapping using neural networks: a case study in north-western Iran

    Mohammadreza Rajabi, Ali Mansourian, Petter Pilesjö, Ahad Bazmani
    179-191
    01-11-2014
    https://doi.org/10.4081/gh.2014.15
    7062
    PDF: 1381
  • Risk assessment for canine leishmaniasis spreading in the north of Italy

    Giulia Morosetti, Gioia Bongiorno, Bernadett Beran, Aldo Scalone, Judith Moser, Marina Gramiccia, Luigi Gradoni, Michele Maroli
    115-127
    01-11-2009
    https://doi.org/10.4081/gh.2009.214
    2420
    PDF: 698
  • Temperature-derived potential for the establishment of phlebotomine sandflies and visceral leishmaniasis in Germany

    Dominik Fischer, Stephanie M. Thomas, Carl Beierkuhnlein
    59-69
    01-11-2010
    https://doi.org/10.4081/gh.2010.187
    2344
    PDF: 1054
  • Identification of environmental parameters and risk mapping of visceral leishmaniasis in Ethiopia by using geographical information systems and a statistical approach

    Teshome Tsegaw, Endalamaw Gadisa, Ahmed Seid, Adugna Abera, Aklilu Teshome, Abate Mulugeta, Merce Herrero, Daniel Argaw, Alvar Jorge, Abraham Aseffa
    299-308
    01-05-2013
    https://doi.org/10.4081/gh.2013.88
    3447
    PDF: 1406
  • Ecological study and risk mapping of visceral leishmaniasis in an endemic area of Iran based on a geographical information systems approach

    Abdoreza Salahi-Moghaddam, Mehdi Mohebali, Ali Moshfae, Majid Habibi, Zabiholah Zarei
    71-77
    01-11-2010
    https://doi.org/10.4081/gh.2010.188
    1869
    PDF: 808
  • Ecological study and risk mapping of leishmaniasis in an endemic area of Brazil based on a geographical information systems approach

    Alba Valéria Machado da Silva, Monica de Avelar Figueiredo Mafra Magalhães, Reginaldo Peçanha Brazil, João Carlos Araujo Carreira
    33-40
    01-11-2011
    https://doi.org/10.4081/gh.2011.155
    1571
    PDF: 866
  • Risk map for cutaneous leishmaniasis in Ethiopia based on environmental factors as revealed by geographical information systems and statistics

    Ahmed Seid, Endalamaw Gadisa, Teshome Tsegaw, Adugna Abera, Aklilu Teshome, Abate Mulugeta, Merce Herrero, Daniel Argaw, Alvar Jorge, Asnakew Kebede, Abraham Aseffa
    377-387
    01-05-2014
    https://doi.org/10.4081/gh.2014.27
    5250
    PDF: 2374
  • Application of spatio-temporal scan statistics for the detection of areas with increased risk for American visceral leishmaniasis in the state of Bahia, Brazil

    Deborah D.M.T. Carneiro, Maria E. Bavia, Washington J.S.F. Rocha, Antônio C.Q. Tavares, Luciana L. Cardim, Biruk Alemayehu
    113-126
    01-11-2007
    https://doi.org/10.4081/gh.2007.260
    1345
    PDF: 831
  • Intra-urban differences underlying leprosy spatial distribution in central Brazil: geospatial techniques as potential tools for surveillance

    Amanda G. Carvalho, Carolina Lorraine H. Dias, David J. Blok, Eliane Ignotti, João Gabriel G. Luz
    06-10-2023
    https://doi.org/10.4081/gh.2023.1227
    1090
    PDF: 500
    Supplementary Materials: 43
    HTML: 10
  • Exploring recent spatial patterns of cutaneous leishmaniasis and their associations with climate in some countries of the Middle East using geographical information systems

    Salahuddin M. Jaber, Jwan H. Ibbini, Nawal S. Hijjawi, Nafn M. Amdar, Mohammed J. Huwail, Khalid Al-Aboud
    143-158
    01-11-2013
    https://doi.org/10.4081/gh.2013.62
    1952
    PDF: 917
  • Incidence of visceral leishmaniasis in the Vaishali district of Bihar, India: spatial patterns and role of inland water bodies

    Gouri Sankar Bhunia, Shreekant Kesari, Nandini Chatterjee, Dilip Kumar Pal, Vijay Kumar, Alok Ranjan, Pradeep Das
    205-215
    01-05-2011
    https://doi.org/10.4081/gh.2011.173
    1572
    PDF: 933
  • Ecological niche modeling for visceral leishmaniasis in the state of Bahia, Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis

    Prixia Nieto, John B. Malone, Maria E. Bavia
    115-126
    01-11-2006
    https://doi.org/10.4081/gh.2006.286
    1754
    PDF: 778
  • Susceptibility mapping of visceral leishmaniasis based on fuzzy modelling and group decision-making methods

    Mohamadreza Rajabi, Ali Mansourian, Ahad Bazmani
    37-50
    01-11-2012
    https://doi.org/10.4081/gh.2012.103
    1542
    PDF: 866
  • Place and health infrastructure in the Gulf Cooperation Council: A systematic scoping review of GIS applications in health

    Dari Alhuwail, Saad AlSharrah, Neil T Coffee, Faisal H Al-Refaei, Mark Daniel
    29-12-2020
    https://doi.org/10.4081/gh.2020.887
    2488
    PDF: 907
    HTML: 40
  • Influence of topography on the endemicity of Kala-azar: a study based on remote sensing and geographical information system

    Gouri S. Bhunia, Shreekant Kesari, Algarsamy Jeyaram, Vijay Kumar, Pradeep Das
    155-165
    01-05-2010
    https://doi.org/10.4081/gh.2010.197
    2082
    PDF: 790
  • Importance of individual analysis of environmental and climatic factors affecting the density of Leishmania vectors living in the same geographical area: the example of Phlebotomus ariasi and P. perniciosus in northeast Spain

    Cristina Ballart, Irene Guerrero, Xavier Castells, Sergio Baròn, Soledad Castillejo, M. Magdalena Alcover, Montserrat Portús, Montserrat Gállego
    389-403
    01-05-2014
    https://doi.org/10.4081/gh.2014.28
    2628
    PDF: 1087
  • Mapping the main Leishmania phlebotomine vector in the endemic focus of the Mt. Vesuvius in southern Italy

    Erika Rossi, Laura Rinaldi, Vincenzo Musella, Vincenzo Veneziano, Sabrina Carbone, Luigi Gradoni, Giuseppe Cringoli, Michele Maroli
    191-198
    01-05-2007
    https://doi.org/10.4081/gh.2007.267
    1753
    PDF: 663
  • Spatial epidemiology and meteorological risk factors of COVID-19 in Fars Province, Iran

    Marjan Zare, Ali Semati, Alireza Mirahmadizadeh, Abdulrasool Hemmati, Mostafa Ebrahimi
    08-06-2022
    https://doi.org/10.4081/gh.2022.1065
    750
    PDF: 301
    HTML: 18
  • From Snow’s map of cholera transmission to dynamic catchment boundary delineation: current front lines in spatial analysis

    Behzad Kiani, Colleen Lau, Robert Bergquist
    26-10-2023
    https://doi.org/10.4081/gh.2023.1247
    1352
    PDF: 602
    HTML: 22
  • The spatial distribution of injuries in need of surgical intervention in Nepal

    Shailvi Gupta, Thomas A. Groen, Barclay T. Stewart, Sunil Shrestha, David A. Spiegel, Benedict C. Nwomeh, Reinou S. Groen, Adam L. Kushner
    31-05-2016
    https://doi.org/10.4081/gh.2016.359
    3304
    PDF: 1147
    HTML: 1100
  • Modelling the presence of disease under spatial misalignment using Bayesian latent Gaussian models

    Xavier Barber, David Conesa, Silvia Lladosa, Antonio Lòpez-Quílez
    18-04-2016
    https://doi.org/10.4081/gh.2016.415
    3341
    PDF: 1611
    HTML: 2222
  • An operative dengue risk stratification system in Argentina based on geospatial technology

    Ximena Porcasi, Camilo H. Rotela, María V. Introini, Nicolás Frutos, Sofía Lanfri, Gonzalo Peralta, Estefanía A. De Elia, Mario A. Lanfri, Carlos M. Scavuzzo
    S31-S42
    01-09-2012
    https://doi.org/10.4081/gh.2012.120
    2786
    PDF: 1393
  • SandflyMap: leveraging spatial data on sand fly vector distribution for disease risk assessments

    Desmond H. Foley, Richard C. Wilkerson, L. Lynnette Dornak, David B. Pecor, Arpad S. Nyari, Leopoldo M. Rueda, Lewis S. Long, Jason H. Richardson
    S25-S30
    01-09-2012
    https://doi.org/10.4081/gh.2012.119
    2111
    PDF: 882
  • Localization of kala-azar in the endemic region of Bihar, India based on land use/land cover assessment at different scales

    Gouri S. Bhunia, Shreekant Kesari, Nandini Chatterjee, Vijay Kumar, Pradeep Das
    177-193
    01-05-2012
    https://doi.org/10.4081/gh.2012.136
    1216
    PDF: 827
  • Mastering geographically weighted regression: key considerations for building a robust model

    Behzad Kiani, Benn Sartorius, Colleen L. Lau, Robert Bergquist
    29-02-2024
    https://doi.org/10.4081/gh.2024.1271
    7719
    PDF: 1266
    HTML: 846
  • Remotely identifying potential vector habitat in areas of refugee and displaced person populations due to the Syrian civil war

    Samuel N. Chambers, Joseph A. Tabor
    09-11-2018
    https://doi.org/10.4081/gh.2018.670
    1910
    PDF: 863
    HTML: 44
  • Mapping of the environmental contamination of Toxoplasma gondii by georeferencing isolates from chickens in an endemic area in Southeast Rio de Janeiro State, Brazil

    Luciana Casartelli-Alves, Maria Regina Reis Amendoeira, Viviane Cardoso Boechat, Luiz Cláudio Ferreira, João Carlos Araujo Carreira, José Leonardo Nicolau, Eloiza Paula de Freitas Trindade, Julia Novaes de Barros Peixoto, Mônica de Avelar Figueiredo Mafra Magalhães, Raquel de Vasconcellos Carvalhaes de Oliveira, Tânia Maria Pacheco Schubach, Rodrigo Caldas Menezes
    18-05-2015
    https://doi.org/10.4081/gh.2015.311
    3158
    PDF: 1312
    HTML: 1505
  • Spatiotemporal heterogeneity of SARS-CoV-2 diffusion at the city level using geographically weighted Poisson regression model: The case of Bologna, Italy

    Addisu Jember Zeleke, Rossella Miglio, Pierpaolo Palumbo, Paolo Tubertini, Lorenzo Chiari, Bologna MODELS4COVID Study Group of the University of Bologna and the National Institute for Nuclear Physics (INFN)
    01-12-2022
    https://doi.org/10.4081/gh.2022.1145
    1373
    PDF: 797
    Appendix: 78
    HTML: 68
  • The geo-spatial perspective of biological, social and environmental determinants of early pregnancy anaemia in rural Sri Lanka: Need for context-specific approaches on prevention

    Gayani Shashikala Amarasinghe, Thilini Chanchala Agampodi, Vasana Mendis, Suneth Buddhika Agampodi
    29-11-2022
    https://doi.org/10.4081/gh.2022.1110
    1152
    PDF: 689
    HTML: 29
  • Combining process-based and correlative models improves predictions of climate change effects on Schistosoma mansoni transmission in eastern Africa

    Anna-Sofie Stensgaard, Mark Booth, Grigory Nikulin, Nicky McCreesh
    31-03-2016
    https://doi.org/10.4081/gh.2016.406
    3745
    PDF: 1284
    HTML: 1054
  • There is more to satellite imagery than meets the eye

    Robert Bergquist, John B. Malone
    31-05-2022
    https://doi.org/10.4081/gh.2022.1106
    2237
    PDF: 440
    HTML: 19
  • Spatial patterns of intestinal parasite infections among children and adolescents in some indigenous communities in Argentina

    Carlos Matías Scavuzzo, Micaela Natalia Campero, Rosana Elizabeth Maidana, María Georgina Oberto, María Victoria Periago, Ximena Porcasi
    28-05-2024
    https://doi.org/10.4081/gh.2024.1279
    2289
    PDF: 474
    HTML: 76
  • Monitoring techniques in the capture and adoption of dogs and cats

    Jason Onell Ardila Galvis, Oswaldo Santos Baquero, Ricardo Augusto Dias, Fernando Ferreira, Evelyn Nestori Chiozzotto, José Henrique Hildebrand Grisi-Filho
    04-11-2015
    https://doi.org/10.4081/gh.2015.339
    3880
    PDF: 1593
    HTML: 1464
  • Predicting the spatial distribution of Biomphalaria straminea, a potential intermediate host for Schistosoma mansoni, in China

    Mohamed R. Habib, Yun-Hai Guo, Shan Lv, Wen-Biao Gu, Xiao-Heng Li, Xiao-Nong Zhou
    29-11-2016
    https://doi.org/10.4081/gh.2016.453
    3685
    PDF: 1249
    HTML: 1130
  • Modelling of the distribution of Biomphalaria glabrata and Biomphalaria straminea in the metropolitan region of Recife, Pernambuco, Brazil

    Verônica Santos Barbosa, Ricardo José de Paula Souza e Guimarães, Rodrigo Moraes Loyo, Constança Simões Barbosa
    25-11-2016
    https://doi.org/10.4081/gh.2016.490
    2695
    PDF: 1077
    HTML: 1598
  • Vector-borne diseases in a warmer world: Will they stay or will they go?

    Robert Bergquist, Anna-Sofie Stensgaard, Laura Rinaldi
    07-05-2018
    https://doi.org/10.4081/gh.2018.699
    2462
    PDF: 1099
    HTML: 210
  • Predicting frequency distribution and influence of sociodemographic and behavioral risk factors of Schistosoma mansoni infection and analysis of co-infection with intestinal parasites

    Carla V.V. Rollemberg, Marília M.B.L. Silva, Karla C. Rollemberg, Fábio R. Amorim, Nayanna M.N. Lessa, Marcos D.S. Santos, Acácia M.B. Souza, Enaldo V. Melo, Roque P. Almeida, Ângela M. Silva, Guilherme L. Werneck, Mario A. Santos, José A.P. Almeida, Amélia R. Jesus
    18-05-2015
    https://doi.org/10.4081/gh.2015.303
    4519
    PDF: 1778
    HTML: 1077
  • Climate change and species distribution: possible scenarios for thermophilic ticks in Romania

    Cristian DomÈ™a, Attila D. Sándor, Andrei D. Mihalca
    31-05-2016
    https://doi.org/10.4081/gh.2016.421
    2699
    PDF: 1232
    HTML: 1673
  • Leptospirosis and its spatial and temporal relations with natural disasters in six municipalities of Santa Catarina, Brazil, from 2000 to 2016

    Ana Elisa Pereira Silva, Francisco Chiaravalloti Neto, Gleice Margarete de Souza Conceição
    26-11-2020
    https://doi.org/10.4081/gh.2020.903
    2439
    PDF: 905
    HTML: 52
1 - 49 of 49 items

authors

FOR AUTHORS
  • SUBMIT YOUR PAPER
  • Benefits for Authors
  • Guide for Authors
  • How to write a scientific paper
  • How to write a Review article
  • Article Processing Charge

reviewers

FOR REVIEWERS
  • Benefits for Reviewers
  • How to review
  • Thanks to Reviewers

indexing

INDEXING
  • PubMed
  • Scopus
  • Web of Science
  • DOAJ
  • Google Scholar
  • OpenAlex
  • Analytics

Categories

    • Contents
    • Editorials
    • Original Articles
    • Gnosis(GIS) symposium
    • Corrections

vhealths

vHealth Section

Geospatial Health
opens the new vHealth section. Discover vHealth

Vol. 20 No. 1 (2025)
Dengue risk-mapping in an Amazonian locality in Colombia based on regression and multi-criteria analysis
Maria Camila Lesmes et al.
4 June 2025
Vol. 20 No. 1 (2025)
The future of spatial epidemiology in the AI era: enhancing machine learning approaches with explicit spatial structure
Nima Kianfar et al.
4 June 2025
Vol. 20 No. 1 (2025)
Typhoid fever in Jakarta, Indonesia 2017-2023: spatial clustering and seasonality of hospitalization data to inform better intervention
Mujiyanto Mujiyanto et al.
15 May 2025
Vol. 20 No. 1 (2025)
Spatial autocorrelation pattern of COVID-19 vaccine coverage in Thailand 2021 and 2022
Sarayu Muntaphan et al.
13 May 2025
Vol. 20 No. 1 (2025)
Spatial multilevel modelling male partners’ influence on women’s modern contraceptive use: a study in Angola and Zambia
Kabeya Clement Mulamba
12 May 2025
Vol. 20 No. 1 (2025)
Risk discrepancies in COVID-19-related community environments based on spatiotemporal monitoring
Jihong Zhang et al.
28 April 2025

Keywords

Geospatial Health

is an Open Access, peer-reviewed journal published by PAGEPress®, Pavia, Italy. All credits and honors to PKP for their OJS.

pISSN: 1827-1987
eISSN: 1970-7096

Info

  • About
  • Editorial Board
  • News
  • Advertising

Info Submission

  • Submission
  • Guidelines For Authors

Our App Is Free For Anyone!

Themes by Openjournaltheme.com

© PAGEPress 2008-2025    •    PAGEPress® is a registered trademark property of PAGEPress srl, Italy    •    VAT: IT02125780185    •    Privacy